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Abstract. Petrographic features, mineralogy, and stable iso-
topes from two stalagmites, ANJB-2 and MAJ-5, respec-
tively from Anjohibe and Anjokipoty caves, allow distinc-
tion of three intervals of the Holocene in NW Madagascar.
The Malagasy early Holocene (between ca. 9.8 and 7.8 ka)
and late Holocene (after ca. 1.6 ka) intervals (MEHI and
MLHI, respectively) record evidence of stalagmite deposi-
tion. The Malagasy middle Holocene interval (MMHI, be-
tween ca. 7.8 and 1.6 ka) is marked by a depositional hiatus
of ca. 6500 years.

Deposition of these stalagmites indicates that the two
caves were sufficiently supplied with water to allow stalag-
mite formation. This suggests that the MEHI and MLHI in-
tervals may have been comparatively wet in NW Madagas-
car. In contrast, the long-term depositional hiatus during the
MMHI implies it was relatively drier than the MEHI and the
MLHI.

The alternating wet–dry–wet conditions during the
Holocene may have been linked to the long-term migrations
of the Intertropical Convergence Zone (ITCZ). When the
ITCZ’s mean position is farther south, NW Madagascar ex-
periences wetter conditions, such as during the MEHI and
MLHI, and when it moves north, NW Madagascar climate
becomes drier, such as during the MMHI. A similar wet–

dry–wet succession during the Holocene has been reported in
neighboring locations, such as southeastern Africa. Beyond
these three subdivisions, the records also suggest wet con-
ditions around the cold 8.2 ka event, suggesting a causal re-
lationship. However, additional Southern Hemisphere high-
resolution data will be needed to confirm this.

1 Introduction

Although much is known about Holocene climate change
worldwide (Mayewski et al., 2004; Wanner and Ritz, 2011;
Wanner et al., 2011, 2015), high-resolution climate data for
the Holocene period is still regionally limited in the South-
ern Hemisphere (SH) (e.g., Wanner et al., 2008, 2015; Mar-
cott et al., 2013), including Madagascar. This uneven distri-
bution of data hinders our understanding of the spatiotempo-
ral characteristics of Holocene climate change and the forc-
ings involved. For example, some forcings would have in-
fluenced the behavior of the Intertropical Convergence Zone
(ITCZ) as well as monsoonal responses in low- to mid-
latitude regions (e.g., Wanner et al., 2015; Talento and Bar-
reiro, 2016). In fact, Madagascar is ideally located to provide
data on SH Holocene climate changes because of its location
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Figure 1. Climatological and geographic setting of Madagascar and the study area. (a) Global rainfall maps recorded by NASA’s Tropical
Rainfall Measuring Mission (TRMM) satellite showing the total monthly rainfall in millimeters and the overall position of the ITCZ during
November, 2006. Darker shades of blue indicate regions of higher rainfall (source: NASA Earth Observatory, 2016). (b) Bar plots of monthly
precipitation and monthly average of daily maximum, minimum, and mean temperature in NW Madagascar, based on 1971–2000 climate
data. Source: http://iridl.ldeo.columbia.edu/ (access: 31 August 2016). (c) Simplified map showing the southwestern part of the Narinda karst
and the location of the study areas. Inset figure is a map of Madagascar showing the extent of the Tertiary limestone outcrop that makes
up the Narinda karst. (d–e) Maps of Anjohibe (ANJB) and Anjokipoty (ANJK) caves (St-Ours, 1959; Middleton and Middleton, 2002),
with approximate location for sample collection (red dots). See Figs. S1–S3 in the Supplement for additional information about the study
locations.

in the southwestern Indian Ocean and because it is season-
ally visited by the ITCZ (Fig. 1a). Furthermore, a karst belt
with caves extends from the north to the south of the island
(Fig. 1c), crossing latitudinal climate belts, and this could
potentially be a source of stalagmite data. Thus, Madagas-
car is a natural laboratory to study ITCZ dynamics over time.
New records from Madagascar could fill gaps in paleoclimate
datasets for the SH that might help refine paleoclimate sim-
ulations, and thus provide a better understanding of global
circulation and land–atmosphere–ocean interactions during
the Holocene.

In this paper, we present records of stable isotopes, petrog-
raphy, mineralogy, variability in layer-specific width (LSW)
from stalagmites from Anjohibe and Anjokipoty caves. Sta-
lagmites are used because of their potential to store signif-
icant climatic information (e.g., Fairchild and Baker, 2012,

p. 9–10), and in Anjohibe Cave recent studies have shown the
replicability of paleoclimate records from stalagmites (e.g.,
Burns et al., 2016).

Two stalagmites were investigated, and these allowed us
to characterize Holocene climate change in NW Madagas-
car. First, we developed a record of climate change using the
stalagmite proxy data. With a better understanding of Mada-
gascar’s paleoclimate, we then investigated possible drivers
of tropical climate change to isolate the major factors con-
trolling the hydrological cycle in NW Madagascar and sur-
rounding regions during the Holocene.
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2 Setting

2.1 Stalagmites and their setting

Stalagmites are secondary cave deposits that are CaCO3 pre-
cipitates from cave drip water. Calcium carbonate precipita-
tion occurs mainly by CO2 degassing, which increases the
pH of the drip water and thus increases the concentration
of CO2−

3 . In some cases, evaporation may also contribute
to increased Ca2+ and/or CO2−

3 concentrations in drip wa-
ter. CO2 degassing occurs when high-PCO2 water from the
epikarst encounters low-PCO2 cave air. Evaporation occurs
when humidity inside the cave is relatively low. The funda-
mental equation for stalagmite deposition–nondeposition is

Ca2+
(aq)+ 2HCO−3 (aq) 
 CaCO3 (s)+CO2 (g)+H2O(l). (1)

Growth and nongrowth of stalagmites depends on conditions
that affect Eq. (1). An increase in Ca2+ drives the equation to
the right (towards precipitation) and an increase in CO2 of the
cave air and/or H2O drives it to the left (towards dissolution).
All components of the equation are influenced by the supply
of water to the cave, which is generally climate-dependent.
More water enters the cave during warm–rainy seasons than
during cold–dry seasons. Stalagmites will form when cave
drip water is saturated with respect to calcite and/or arag-
onite. If the water passes through the bedrock too quickly
to dissolve significant carbonate rock, and/or enters the cave
and reaches the stalagmite too quickly to degas significant
CO2, it will not be saturated with respect to CaCO3, inhibit-
ing stalagmite formation. Stalagmite growth will slow as drip
water declines and will stop entirely if flow ceases. Vegeta-
tion provides CO2 to the soil via root respiration; thus, the
vegetation cover above the cave and the type of vegetation
can promote or limit stalagmite growth. Overall, the karst
hydrological system plays a crucial role in the deposition
and nondeposition of stalagmites, and this is closely linked
to changes in local and regional environment and climate.

2.2 Regional environmental setting

Stalagmites ANJB-2 and MAJ-5 were collected from Anjo-
hibe and Anjokipoty caves, respectively, in the Mahajanga
region of NW Madagascar (Fig. 1). Sediments and fossils
from these caves have already provided many insights about
the paleoenvironmental and archaeological history of NW
Madagascar (e.g., Burney et al., 1997, 2004; Brook et al.,
1999; Gommery et al., 2011; Jungers et al., 2008; Vasey et
al., 2013; Burns et al., 2016; Voarintsoa et al., 2017b).

Anjohibe (S15◦32′33.3′′, E046◦53′07.4′′) and Anjokipoty
(S15◦34’42.2′′, E046◦44′03.7′′) are about 16.5 km apart
(Fig. 1c). Their location in the zone visited by the ITCZ
(e.g., Nassor and Jury, 1998) makes them ideal sites to test
the hypothesis that latitudinal migration of the ITCZ influ-
enced the Holocene climate of NW Madagascar (e.g., Chiang
and Bitz, 2005; Broccoli et al., 2006; Chiang and Friedman,

2012; Schneider et al., 2014). Mahajanga has a tropical sa-
vanna climate (Aw) according to the Köppen–Geiger climate
classification, with a distinct wet summer (from October to
April) and dry winter (May–September). The mean annual
rainfall is around 1160 mm. The mean maximum tempera-
ture in November, the hottest month in the summer, is about
32 ◦C. The mean minimum temperature in July, the coldest
month of the dry winter, is about 18 ◦C (Fig. 1b).

2.3 Climate of Madagascar

The climate of Madagascar is unique because of its varied
topography and its position in the Indian Ocean (Supple-
ment Figs. S1–S2; also see Jury, 2003; DGM, 2008; Dou-
glas and Zinke, 2015, p. 281–299; Voarintsoa et al., 2017b,
p. 138–139; Scroxton et al., 2017). Regionally distinct rain-
fall gradients from east to west and from north to south are
evident across the country (Jury, 2003; Dewar and Richard,
2007), and these are linked to easterly trade winds in winter
(May–October) and northwesterly tropical storms in sum-
mer, respectively. In NW Madagascar, summer rainfall is
monsoonal and it is in phase with the seasonal southward mi-
gration of the ITCZ. The studies of Chiang and Bitz (2005)
and Broccoli et al. (2006) have suggested that cooler–warmer
intervals bring the ITCZ south–north; thus, regions in the
tropical SH are wet–dry. Generally, the ITCZ migrates to-
wards the Earth’s warmer hemisphere (Frierson and Hwang,
2012; Kang et al., 2008; McGee et al., 2014; Sachs et al.,
2009). In fact, longer-term ITCZ migration appears to have
affected climate in NW Madagascar between ca. 370 and
800 CE (see Fig. 8 of Voarintsoa et al., 2017b). This relation-
ship was inferred from changes in global climate conditions.

The climate of Madagascar is also influenced by changes
in Indian Ocean sea surface temperature (SST) (Zinke et al.,
2004; see also Kunhert et al., 2014) and changes in the Agul-
has Current SST off southwestern Madagascar (Lutjeharms,
2006; Beal et al., 2011; Zinke et al., 2014). The most im-
mediate signal is the Indian Ocean Dipole (IOD), or Indian
Ocean zonal mode (Li et al., 2003; Zinke et al., 2004), but
the El Niño–Southern Oscillation (ENSO) may also influ-
ence its climate (e.g., Brook et al., 1999). The IOD has been
linked to Holocene climate variability in the tropical Indian
Ocean (Abram et al., 2009; Tierney et al., 2013). However,
its linkages to ENSO are still debated (e.g., Saji et al., 1999;
Li et al., 2003; Lee and McPhaden, 2008; Brown et al., 2009;
Schott et al., 2009; Shinoda et al., 2004; Venzke et al., 2000;
Abram et al., 2008; Saji and Yagamata, 2003; Meyers et al.,
2007). The complex interactions between these interannual
climatic factors make them an ideal topic for further investi-
gation using high-resolution records, and thus they will not
be the focus of this paper. However, their possible effects are
referred to briefly in Supplement text 4.
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2.4 The Holocene in NW Madagascar

Little is hitherto known about Holocene climate change in
NW Madagascar or about the major drivers of long-term cli-
matic changes there. Most paleoclimate information from
this region covers the last 2 millennia with more focus on
the anthropogenic effects on the Malagasy ecosystems (e.g.,
Crowley and Samonds, 2013; Burns et al., 2016; Voarintsoa
et al., 2017b). This is because several studies show that
megafaunal extinctions in Madagascar coincide with the ar-
rival of humans around 2–3 thousand (ka) BP (e.g., see Ta-
ble 1 of Virah-Sawmy et al., 2010; MacPhee and Burney,
1991; Burney et al., 1997; Crowley, 2010). There are even
fewer long-term paleoclimate records for the NW region,
with only sediments from Lake Mitsinjo (3.5 ka BP; Mat-
sumoto and Burney, 1994) and stalagmites from Anjohibe
Cave (40 ka BP; Burney et al., 1997) providing records of
more than 3000 years. Even though these records provide
useful information about paleoenvironmental changes in NW
Madagascar, links to global climatic changes, particularly the
links to changes in ITCZ, are not yet fully understood.

3 Methods

3.1 Radiometric dating

A total of 22 samples were drilled from Stalagmite ANJB-
2 and 9 samples for Stalagmite MAJ-5 for U-series dating
(Table S1 and S2). Each sampling trench is long (∼ 5 to
20 mm), narrow (∼ 1–2 mm), and shallow (∼ 1 mm), allow-
ing us to extract 50–250 mg of CaCO3 powder. We followed
the chemical procedures described in Edwards et al. (1987)
and Shen et al. (2002) when separating uranium and thorium.
U /Th measurements were performed on the multi-collector
inductively coupled plasma mass spectrometry (ICP-MS) of
the University of Minnesota, USA, and on a similar instru-
ment in the Stable Isotopes Laboratory of Xi’an, in Jiaotong,
China. Instrument details are provided in Cheng et al. (2013).
Corrected 230Th ages assume an initial 230Th / 232Th atomic
ratio of 4.4± 2.2× 10−6. This is the ratio for “bulk earth”
or crustal material at secular equilibrium with a 232Th / 238U
value of 3.8. The uncertainty in the bulk earth value is as-
sumed to be ±50 % (see footnotes to Tables S1 and S2 in
the Supplement). The error in the final corrected age incor-
porates this uncertainty. The radiometric data are reported
as years BP, where BP is before present, and “present” is
AD 1950. Stalagmite chronologies were constructed using
the StalAge1.0 algorithm of Scholz and Hoffman (2011) and
Scholz et al. (2012), an algorithm using a Monte Carlo sim-
ulation. The algorithm can identify major and minor out-
liers and age inversions. The StalAge scripts were run on the
statistics program R version 3.2.2. The age models were ad-
justed considering hiatal surfaces identified in the samples,
using the approach of Railsback et al. (2013; see their Fig. 9).

3.2 Petrography and mineralogy

Petrography and mineralogy of the two stalagmites were in-
vestigated (1) by examining both the polished surfaces and
the scanned images of the sectioned stalagmites, and by
identifying any diagenetic fabrics (e.g., Zhang et al., 2014)
that could potentially affect stable isotope values, (2) by ob-
serving 11 oversized thin sections (50.8× 76.2 mm) under
the Leitz Laborlux 12 Pol microscope and the Leica DMLP
equipped with QCapture in the Sedimentary Geochemistry
Lab at the University of Georgia, (3) by using scanning elec-
tron microscopy (SEM) to better understand the mineralogi-
cal fabrics at locations of interest (Fig. S13), and (4) by ana-
lyzing about 30–100 mg of powdered spelean layers (n= 15)
on a Bruker D8 X-ray diffractometer in the Department of
Geology, University of Georgia. For calcite and aragonite
identification, we used CoKα radiation at a 2θ angle between
20 and 60◦.

LSW of clearly defined layers was measured at selected
locations on the stalagmite polished surfaces (Fig. S4; Slet-
ten et al., 2013; Railsback et al., 2014; Voarintsoa et al.,
2017b). LSW is the horizontal distance between two points
on the flanks of the stalagmite where convexity is greatest. It
is the width near the top of the stalagmite when the layer
being examined was deposited. LSW is measured at right
angles to the growth axis of the stalagmite; it is the hori-
zontal distance between two points on the layer growth sur-
face, at which a virtual line inclined at 35◦ to the growth
axis becomes tangent to the layer growth surface as shown
in Fig. S4. LSW may vary along the growth axis of the sta-
lagmite, with smaller values suggesting drier conditions and
larger values wetter conditions.

3.3 Stable isotopes

Samples of 50–100 µg were drilled along the stalagmite’s
growth axis for stable isotope analysis. The trench size is
very small (1.5× 0.5× 0.5 mm). Since a small mixture of
calcite and aragonite could potentially change the δ18O and
δ13C of the measured spelean layers (see for example Frisia
et al., 2002), drilling and sample extraction were carefully
performed on individually discrete layers using the smallest
drill-bit head (SSW-HP-1/4) to avoid potential mixing be-
tween calcite and aragonite. The polished surface of the two
stalagmites was examined to see if features of diagenetic al-
teration are present (see for example Fig. 2 of Zhang et al.,
2014), but none was found. During sampling, the mineralogy
at the crest, where stable isotope samples were extracted, was
recorded for future mineralogical correction.

Aragonite oxygen and carbon isotopic corrections were
performed to compensate for aragonite’s inherent fraction-
ation of heavier isotopes (e.g., Romanek et al., 1992; Kim
et al., 2007; McMillan et al., 2005) and to remove the min-
eralogical bias in isotopic interpretation between calcite and
aragonite. The correction consists of subtracting 0.8 ‰ for
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Figure 2. Age model of Stalagmites MAJ-5 (a) and ANJB-2 (b)
using the StalAge1.0 algorithm of Scholz and Hoffman (2011) and
Scholz et al. (2012). Scanned images of the two samples are shown
for reference and to indicate the three distinct Holocene intervals.

δ18O (Kim and O’Neil, 1997; Tarutani et al., 1969; Kim et
al., 2007; Zhang et al., 2014) and 1.7 ‰ for δ13C (Rubin-
son and Clayton, 1969; Romanek et al., 1992) for the arag-
onite, as has been carried out previously (e.g., Holmgren et
al., 2003; Sletten et al., 2013; Liang et al., 2015; Railsback
et al., 2016; Voarintsoa et al., 2017a), as shown in Eqs. (2)
and (3) below (where RA/C is the aragonite percentage if not
100 %).

δ18Ocorr.(‰,VPDB)= δ18Ouncorr.(‰,VPDB)
− [RA/C× 0.8(‰,VPDB)] (2)

δ13Ccorr.(‰,VPDB)= δ13Cuncorr.(‰,VPDB)
− [RA/C× 1.7(‰,VPDB)] (3)

Supplement Figs. S6–S8 show both the corrected and uncor-
rected isotopic records.

For the analytical methods, oxygen and carbon isotope
ratios were measured using the Finnigan MAT 253 mass
spectrometer fitted with the Kiel IV Carbonate Device of
the Xi’an Stable Isotope Laboratory in China (ANJB-2; n=
654) and using the Delta V Plus at 50 ◦C fitted with the
GasBench isotope ratio mass spectrometer (IRMS) of the
Alabama Stable Isotope Laboratory in USA (MAJ-5; n=
286). Analytical procedures using the MAT 253 are iden-
tical to those described in Dykoski et al. (2005), with iso-
topic measurement errors of less than 0.1 ‰ for both δ13C

and δ18O. Analytical methods and procedures using the Gas-
Bench IRMS machine are identical to those described in
Skrzypek and Paul (2006), Paul and Skrzypek (2007), and
Lambert and Aharon (2011), with ±0.1 ‰ errors for both
δ13C and δ18O. In both techniques, the results are reported
relative to Vienna Pee Dee Belemnite (VPDB) and with stan-
dardization relative to NBS19. An inter-lab comparison of
the isotopic results was conducted, and it involved replicat-
ing every 10th sample of Stalagmite MAJ-5 at both labs. This
exercise showed a strong correlation between the lab results
(Supplement Fig. S5).

4 Results

4.1 Radiometric data

Results from radiometric analyses of the two stalagmites are
presented in Tables S1 and S2. Corrected 230Th ages suggest
that Stalagmite ANJB-2 was deposited between ca. 8977±50
and ca. 161± 64 years BP, and Stalagmite MAJ-5 was de-
posited between ca. 9796± 64 and ca. 150± 24 years BP.
These ages collectively indicate stalagmite deposition at the
beginning (between ca. 9.8 and 7.8 ka BP) and at the end of
the Holocene (after ca. 1.6 ka BP). In both stalagmites, the
older ages have small 2σ errors and they generally fall in cor-
rect stratigraphic order, except sample ANJB-2-120 and its
replicate ANJB-2-120R, which were not used because of the
sample’s high porosity and high detritus content. In contrast,
many of the younger ages have larger uncertainties. This is
mainly because many of the younger samples have very low
uranium concentration and the detrital thorium concentration
is also high, similar to what Dorale et al. (2004) reported. We
also understand that the value for initial 230Th correction, i.e.,
the initial 230Th / 232Th atomic ratio of 4.4±2.2×10−6 for a
bulk earth with a 232Th / 238U value of 3.8, in these samples
could have slightly altered the 230Th age of these younger
samples, leading to larger uncertainties (such as discussed
in Lachniet et al., 2012). We encountered similar problems
while working on other younger samples from the same cave,
but we compared the stable isotope profile with other pub-
lished records using isochron dating methods, and results did
not differ significantly (see Fig. 9 of Voarintsoa et al., 2017b).
Since this work does not focus on decadal or centennial inter-
pretation of the late Holocene stable isotope data, additional
chronology adjustment has not been made, and we used the
chronology from StalAge to construct the time series. How-
ever, in Figs. 5 and 6, age uncertainties are given below the
stable isotope profiles so that comparisons with other records
can accommodate these uncertainties.

The key finding from our age and petrographic data for
the two stalagmites is that they indicate three distinct inter-
vals of growth and nongrowth during the Holocene (Figs. 2–
4, 7). The evidence for this includes (1) CaCO3 deposition
between ca. 9.8 and 7.8 ka BP, (2) a long depositional hiatus
between ca. 7.8 and 1.6 ka BP, and (3) resumption of CaCO3

www.clim-past.net/13/1771/2017/ Clim. Past, 13, 1771–1790, 2017
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Figure 3. (a) Scanned image of Stalagmite ANJB-2 and the corresponding variations in layer-specific width (LSW). (b) Scanned image of
Stalagmite MAJ-5 and the corresponding layer-specific width (LSW). (c) Sketches of typical layer-bounding surfaces (Type E and Type L)
of Railsback et al. (2013). Close-up photographs of the hiatuses are shown in Fig. S6.

deposition after ca. 1.6 ka BP. In the rest of the paper, we will
refer to these intervals as the Malagasy early Holocene inter-
val (MEHI), Malagasy mid-Holocene interval (MMHI), and
Malagasy late Holocene interval (MLHI), respectively.

4.2 Stable isotopes

Raw values of δ18O and δ13C for Stalagmite ANJB-2 range
from −8.9 to −2.3 ‰ (mean = −5.0 ‰) and from −11.0 to
+5.2 ‰ (mean = −4.2 ‰), respectively, relative to VPDB.
Raw values of δ18O and δ13C for Stalagmite MAJ-5 range
from −8.8 to −0.9‰ (mean = −4.9 ‰) and from −9.4 to
+2.6 ‰ (mean = −4.4 ‰), respectively, relative to VPDB.
Mean δ18O and δ13C values are distinguishable between
the MEHI and the MLHI. In both stalagmites, the ampli-
tude of δ18O fluctuations was fairly constant throughout the
Holocene; whereas the δ13C records show a dramatic shift
toward higher values (i.e., from −10.9 to +3.8 ‰, VPDB) at
ca. 1.5 ka BP.

The MEHI and MLHI are isotopically distinct (Fig. 4).
The MEHI is characterized by statistically correlated δ18O
and δ13C (r2

= 0.65 and 0.53) and much depleted δ13C val-
ues (ca. −11.0 to −4.0 ‰). A prominent isotopic excursion

is evident between ca. 8.1 and ca. 8.3 ka BP (Fig. 5), when
stalagmite δ18O and δ13C ratios reach their lowest values of
−6.8 and −10.9 ‰, respectively. In contrast to the MEHI,
the values of δ18O and δ13C during the MLHI are poorly
correlated (r2

= 0.25 and 0.17), and δ13C values are more
enriched (Figs. 4, 6). Since Stalagmites ANJB-2 and MAJ-5
were collected from two different caves, 16 km apart, it is not
surprising to see discrepancies between the stable isotopes
during similar intervals, suggesting that local karst condi-
tions could be one of the discrepancy factors. Another po-
tential source for the discrepancy is the larger uncertainty
of the younger ages due to low uranium and high detrital
concentrations. This U–Th aspect has been a challenge for
several young stalagmites (e.g., Dorale et al., 2004; Lachniet
et al., 2012) including samples from NW Madagascar (this
study). While the utility of speleothems as a climate proxy
largely depends on replication of stable isotope values, this
study specifically highlights the replication of stalagmite de-
position and nondeposition and the isotopic characteristics of
each depositional interval of the Holocene.

Clim. Past, 13, 1771–1790, 2017 www.clim-past.net/13/1771/2017/
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Figure 4. Stable isotope data. Scatter plots of δ13C and δ18O for
Stalagmites MAJ-5 (green) and ANJB-2 (red) during the Malagasy
early Holocene interval (circle) and the Malagasy late Holocene in-
terval (triangle). The plot shows distinctive early and late Holocene
conditions (roughly highlighted in gray and light blue, respectively).

4.3 Mineralogy, petrography, and layer-specific width

In both stalagmites ANJB-2 and MAJ-5, the hiatus of depo-
sition is characterized by a well-developed Type L surface
(Figs. 2, 3, S15). Petrography and mineralogy are distinct
before and after this hiatus (Figs. 3, 5–6). Below the hiatus,
laminations are well preserved in both stalagmites. Above the
hiatus, laminations are not well preserved, although noted in
some intervals.

In Stalagmite ANJB-2, LSW varies from 37 to 26.5 mm
with a mean of 30 mm. It decreases to 28 mm at the hia-
tus (Fig. 3). The mineralogy is dominated by aragonite be-
low the hiatus, although there are also a few thick layers

of primary calcite. A thin (∼ 2–3 mm) layer of white, very
soft, and porous aragonite is identified just below the hiatus
(Fig. S15). Above the hiatus, layers are also calcite and arag-
onite, with calcite dominant, and the calcite layers contain
macro-cavities that are mostly off-axis macroholes (Shtober-
Zisu et al., 2012).

As noted in previous Sect. 4.2, there is a prominent iso-
topic excursion at ca. 8.2 ka BP, and this excursion is in the
calcite layer in Stalagmite ANJB-2 at 195–202 mm from its
top. X-ray diffraction spectrum from this layer suggests that
the mineralogy is 100 % calcite (Figs. S14, S16–S17). We be-
lieve the calcite to be primary and not a diagenetic product of
aragonite for three reasons. First, the laminations in the thick
layer of calcite were not altered (Figs. S16–S17). Second, the
polished surface of the stalagmite shows no evidence of fiber
relicts and textural ghosts such as observed in Juxtlahuaca
Cave in southwestern Mexico (Lachniet et al., 2012) and in
Shennong Cave in southeastern China (Zhang et al., 2014).
Third, petrographic comparison with known examples of pri-
mary and secondary calcite observed under microscope (e.g.,
Railsback, 2000; Perrin et al., 2014) suggests that there is no
strong evidence of aragonite-to-calcite transformation.

In Stalagmite MAJ-5, LSW varies from 50 to 22 mm with
a mean of 35.5 mm. It decreases to 22 mm at the hiatus
(Fig. 3). Below the hiatus, mineralogy is an even mixture be-
tween calcite and aragonite. Above the hiatus, mineralogy is
mainly calcite, except the uppermost 2 mm in which miner-
alogy is 75 % calcite and 25 % aragonite. Macro-cavities are
also present throughout this upper part of Stalagmite MAJ-5.

4.4 Summary of results

The various proxy climate records from Stalagmites ANJB-2
and MAJ-5 suggest three distinct climate and/or hydrolog-
ical intervals during the Holocene. The MEHI (ca. 9.8 to
7.8 ka BP), with evidence of stalagmite deposition, is charac-
terized by statistically correlated δ18O and δ13C (r2

= 0.65
and 0.53) and more negative δ13C values (ca. −11.0 to
−4.0 ‰). The MMHI (ca. 7.8 to 1.6 ka BP) is marked by a
long-term hiatus in deposition, which is preceded by a well-
developed Type L surface in both Stalagmites ANJB-2 and
MAJ-5 (Figs. 3, S15). The Type L surface is observed as
an upward narrowing of stalagmite width and layer thick-
ness. It is best developed in Stalagmite MAJ-5 (Fig. S15).
In Stalagmite ANJB-2, the hiatus at the Type L surface is
additionally preceded by a ca. 3 mm thick layer of highly
porous, very soft, and fibrous white crystals of aragonite
(the only aragonite with such properties). This aragonite is
topped by a thin and well-defined layer of detrital materials
(Fig. S15), further evidence of a hiatus. Finally, the MLHI
(after ca. 1.6 ka BP) is characterized by poorly correlated
δ18O and δ13C (r2

= 0.25–0.17), and by a marked shift to-
ward higher δ13C values (Figs. 4, 6).
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Figure 5. Variations in δ13C, δ18O, and mineralogy in Stalagmite ANJB-2 and Stalagmite MAJ-5 during the Malagasy early Holocene
interval. Supplement Fig. S6 shows both the corrected and uncorrected isotope values.

Figure 6. Variations in δ13C, δ18O, and mineralogy in Stalagmite ANJB-2 and Stalagmite MAJ-5 during the Malagasy late Holocene
interval. Supplementary Fig. S7 shows both the corrected and uncorrected isotope values, and Fig. S8 compares the corrected δ18O values
for both stalagmites.

5 Discussion

5.1 Paleoclimate significance of stalagmite growth and
nongrowth: implications for paleohydrology

Growth and nongrowth of stalagmites depends on several
factors linked to water availability, which is largely deter-
mined by climate (more water during warm–rainy seasons
and less water during cold–dry seasons). Water is the main
dissolution and transporting agent for most chemicals in
speleothems. Cave hydrology varies significantly over time
in response to climate, and this variability influences the
formation or dissolution of CaCO3. In this regard, calcium
carbonate does not form if there is little or no water enter-
ing the cave, or if there is too much (see Sect. 2.1). Ab-
sence of groundwater recharge most typically occurs during
extremely dry conditions, whereas excessive water input to
the cave occurs during extremely wet conditions. In the lat-

ter scenario, water is undersaturated and flow rates are too
fast to allow degassing. Often, water availability is reflected
in the extent of vegetation above and around the cave, as
plants require soil moisture or shallow groundwater to sur-
vive and propagate, and this contributes to the stalagmites’
processes of formation. The link between stalagmite growth–
nongrowth, cave drip water, and soil CO2 is broadly influ-
enced by changes in climate.

Major hiatuses in stalagmite deposition could be marked
by a variety of features, including the presence of ero-
sional surfaces, chalkification, dirt bands and/or detrital lay-
ers, offsetting of the growth axis, and/or sometimes by color
changes (e.g., Holmgren et al., 1995; Dutton et al., 2009;
Railsback et al., 2013, 2015; Voarintsoa et al., 2017a). Rails-
back et al. (2013) were able to identify significant features
in stalagmites that allow distinction between nondeposition
during extremely wet conditions (Type E surfaces) and non-
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Figure 7. Simplified models portraying Holocene climate change in NW Madagascar and the possible climatic conditions linked to the ITCZ.
(a) Wetter conditions during the early Holocene with the ITCZ further south (prior to ca. 7.8 ka BP), favorable for stalagmite deposition.
(b) Periodic dry conditions during the mid-Holocene (between ca. 7.8 and 1.6 ka BP) with the ITCZ further north leading to no stalagmite
formation (refer to Sect. 5.2.2). (c) Wetter conditions during the late Holocene (after ca. 1.6 ka BP) with the ITCZ further south, favorable
for stalagmite deposition. Drawings are not to scale. The bottom figures are from the same source as Fig. 1a, and they are only used here to
give a perspective of the possible position of the ITCZ during the early, mid, and late Holocene. Madagascar is indicated with a red ellipse.

deposition during extremely dry conditions (Type L surfaces;
Fig. 3). Physical properties of stalagmites that are evidence
of extreme dry and wet events are summarized in Table 1 of
Railsback et al. (2013) and the mechanisms are explained in
their Fig. 5.

Type E surfaces are layer-bounding surfaces between two
spelean layers when the underlying layers show evidence of
truncation. The truncation results from dissolution or erosion
(thus the name “E”) of previously formed stalagmite layers
by abundant undersaturated water. Type E surfaces are com-
monly capped with a layer of calcite (Railsback et al., 2013).
This mineralogical trend is not surprising as calcite com-
monly forms under wetter conditions (e.g., Murray, 1954;
Pobeguin, 1965; Siegel, 1965; Thrailkill, 1971; Cabrol and
Coudray, 1982; Railsback et al., 1994; Frisia et al., 2002).
Additionally, non-carbonate detrital materials are commonly
abundant with varying grain size (i.e., from silt to sand size;
Railsback et al., 2013).

Type L surfaces, however, are layer-bounding surfaces
where the layers become narrower upward and thinner to-
wards the flanks of the stalagmite. Decreases in layer thick-
ness and stalagmite width upward are indications of lessen-
ing deposition (thus the name “L”; Railsback et al., 2013).
Aragonite is a very common mineralogy below a Type L sur-
face, especially in warmer settings. Layers of aragonite com-
monly form under drier conditions (Murray, 1954; Pobeguin,
1965; Siegel, 1965; Thrailkill, 1971; Cabrol and Coudray,
1982; Railsback et al., 1994; Frisia et al., 2002). Non-

carbonate detrital materials are scarce, and if present, they
tend to form a very thin horizon of very fine dust material
(Railsback et al., 2013). Identification of Type L surfaces is
aided by measuring the LSW (e.g., Sletten et al., 2013; Rails-
back et al., 2014; Fig. S4).

5.2 Holocene climate in NW Madagascar

The age models and petrographic features of Stalagmites
ANJB-2 and MAJ-5 suggest three distinct Holocene climate
intervals (MEHI, MMHI, and MLHI; see Sect. 4.1) in NW
Madagascar. Possible conditions during these intervals are
illustrated in the sketches of Fig. 4.

5.2.1 Malagasy early Holocene interval
(ca. 9.8–7.8 ka BP)

Stalagmite deposition during the early Holocene suggests
that the chambers where Stalagmites ANJB-2 and MAJ-5
were collected were sufficiently supplied with water to al-
low CaCO3 precipitation, in accord with Eq. (1). This in turn
implies relatively wet conditions that could indicate longer
summer rainy seasons relative to modern climate, or wet
years in NW Madagascar. The correlative δ13C and δ18O val-
ues further suggest that vegetation consistently responded to
changes in moisture availability, which in turn was dependent
on climate.
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The prominent negative δ18O and δ13C excursions in Sta-
lagmite ANJB-2 (Sect. 4.2; Figs. 5 and 10) are parallel to
the δ18O excursion of the Greenland ice core records at
ca. 8.2 ka BP (e.g., Alley et al., 1997). The decrease in δ18O
and δ13C values and the presence of calcite mineralogy at
the same interval combine to suggest a wet 8.2 ka BP event
in NW Madagascar. The 8.2 ka BP event was triggered by a
release of freshwater from the melting Laurentide Ice Sheet
into the North Atlantic basin, bringing cooler conditions in
several Northern Hemisphere (NH) regions (e.g., Alley et
al., 1997; Barber et al., 1999), and via global teleconnec-
tions, this may have affected climate in NW Madagascar (see
Sect. 5.5).

The MEHI terminated when conditions became much
drier, as suggested by increasing δ18O and δ13C values in
Stalagmite ANJB-2, by decreasing LSW in both stalagmites,
and by the presence of major Type L surfaces in both sta-
lagmites. The thin (ca. 3 mm), porous, and white aragonite
layer in Stalagmite ANJB-2, a very similar deposit to that
described in Niggemann et al. (2003), suggests that the termi-
nal drought was at times severe. Aragonite is a CaCO3 poly-
morph that forms preferentially under drier conditions (Mur-
ray, 1954; Pobeguin, 1965; Siegel, 1965; Thrailkill, 1971;
Cabrol and Coudray, 1982; Railsback et al., 1994; Frisia et
al., 2002). The porous aragonite layer in Stalagmite ANJB-2
is capped by a very thin layer of non-carbonate, brown detri-
tus, which may have been transported to the stalagmite as an
aerosol and accumulated on the dry stalagmite surface over
time. Accumulation of the detritus must take place in the
absence of drip water (e.g., Railsback et al., 2013). A shift
to drier conditions is also supported by isotopic data from
Stalagmite ANJ94-5 from Anjohibe Cave (Wang and Brook,
2013; Wang, 2016) in which relatively low δ13C and δ18O
values prior to 7.6 ka BP give way to episodically greater val-
ues thereafter.

5.2.2 Malagasy mid-Holocene interval
(ca. 7.8–1.6 ka BP)

The MMHI was a long (∼ 6.5 ka) depositional hiatus in both
stalagmites (Figs. 2–3), potentially suggesting dry condi-
tions. The question is why did neither stalagmite grow during
the MMHI? Here, we try to explain the factors and the cli-
matic conditions that may have been responsible.

The documented severe dry conditions at the end of the
MEHI (see Sect. 5.2.1) could have had a significant influ-
ence (1) on the cave hydrological system (e.g., Fig. 5 of As-
rat et al., 2007; Bosák, 2011), such as the water conduits
(primary or secondary porosity) to the chambers, and (2) on
the vegetation cover above the caves, particularly above the
chambers where Stalagmites ANJB-2 and MAJ-5 were col-
lected. On the one hand, it is possible that the dry conditions
late in the MEHI not only brought lesser water recharge to
the cave, but also lowered the hydraulic head, and increased
the rate of evapotranspiration in the vadose zone. This condi-

tion possibly allowed more air to penetrate the aquifer, per-
haps enhancing prior carbonate precipitation (PCP) in pores
and conduits above the caves (e.g., Fairchild and McMil-
lan, 2007; Fairchild et al., 2000; Johnson et al., 2006; Kar-
mann et al., 2007; McDonald et al., 2007). This process
must have blocked water moving towards Stalagmites ANJB-
2 and MAJ-5. On the other hand, the late MEHI drying trend
(Sect. 5.2.1) could have challenged vegetation to grow, and
we assume that some areas above Anjohibe and Anjokipoty
caves must have been devoid of vegetation. Consequently,
biomass activities could have been reduced. Because vegeta-
tion contributes CO2 to the carbonic acid dissolving CaCO3,
its absence in certain areas above the cave could decrease
the pH of the percolating water, and perhaps dissolution did
not occur. Under these conditions, even if water reached the
stalagmites, it may not have precipitated carbonate.

Whatever factors were responsible for the long-term depo-
sitional hiatus in Stalagmites ANJB-2 and MAJ-5, we believe
that the hiatus was caused by disturbances to water catch-
ments that feed the chambers at Anjohibe and Anjokipoty
caves. The disturbances could be inherited from the very dry
conditions at the end of the MEHI, and/or due to the lack of
water supply, perhaps associated with an increase in epikarst
ventilation, and/or by the absence of vegetation. Water and
vegetation are two components of the karst system that play
an important role in CaCO3 dissolution and precipitation (see
Eq. 1). Their disturbance may have limited limestone disso-
lution in the epikarst and then carbonate precipitation in the
cave zone.

Other evidence supports the idea of at least episodic dry-
ness during the MMHI. A study on a 2 m long stalag-
mite (ANJ94-5) from Anjohibe Cave suggests episodic dry-
ness during the MMHI and a depositional hiatus around the
time when Stalagmites ANJB-2 and MAJ-5 stopped growing
(Wang and Brook, 2013; Wang, 2016). For regional com-
parison, dry spells were also felt in central and southeast-
ern Madagascar (e.g., Gasse and Van Campo, 1998; Virah-
Sawmy et al., 2009).

In summary, several lines of evidence suggest a relatively
drier climate in NW Madagascar during the MMHI com-
pared to the MEHI. Drier intervals generally imply drier
summer seasons with less rainfall (Fig. 8), perhaps reflect-
ing shorter visits by the ITCZ. In this regard, even though
the region received rainfall, the necessary conditions could
not have been attained to activate the growth of Stalagmites
ANJB-2 and MAJ-5, thus the hiatuses.

5.2.3 Malagasy late Holocene interval
(ca. 1.6 ka BP–present)

Resumption of stalagmite deposition after ca. 1.6 ka BP sug-
gests a wetter climate in NW Madagascar with reactivation
of the previous epikarst hydrologic system. Climatic condi-
tions must have been similar to those of the early Holocene.
The sudden beginning of stalagmite growth during the MLHI
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Figure 8. Regional comparison. Google Earth image showing the location of sites reported in Table S3 and in Fig. 9. Most site records are
from lake sediments, except for GeoB9307-3 (onshore off delta sediments), MD79257 (alkenone from marine sediment core), and Cold Air,
Anjohibe, and Anjokipoty caves (stalagmites δ18O).

and the large δ13C shift from depleted to enriched values at
ca. 1.5 ka BP (Fig. 6) after such long hiatuses may have been
associated with changes in vegetation cover above the cave
linked to human activities (e.g., Burns et al., 2016; Crow-
ley and Samonds, 2013; Crowther et al., 2016; Voarintsoa et
al., 2017b). Lower δ13C values in Stalagmite MAJ-5 after
0.8 ka BP (Fig. 3), compared to higher values in Stalagmite
ANJB-2, may suggest different local karst conditions, either
natural, human-induced, or something else, at each site. Fur-
ther investigations will be necessary to better understand this.

5.3 Holocene climate in NW Madagascar: implications
for ITCZ dynamics

In NW Madagascar, stalagmite deposition during the MEHI
and the MLHI suggests there was sufficient drip water for
stalagmite growth and therefore wetter conditions. This may
indicate a more southerly mean position of the ITCZ. Factors
that could influence the mean position of the ITCZ include
changes in insolation (e.g., Haug et al., 2001; Wang et al.,
2005; Cruz et al., 2005; Fleitmann et al., 2003, 2007; Schefuß
et al., 2005; Suziki, 2011; Kutzbach and Liu, 1997; Partridge
et al., 1997; Verschuren et al., 2009; Voarintsoa et al., 2017a)
and difference in temperature between the two hemispheres
(e.g., Chiang and Bitz, 2005; Broccoli et al., 2006; Chiang
and Friedman, 2012; Kang et al., 2008; McGee et al., 2014;
Talento and Barreiro, 2016).

In contrast, the depositional hiatuses during the MMHI
could suggest overall drier conditions, and thus a northward
migration of the mean ITCZ. It may agree with the paleocli-
mate simulation of Braconnot et al. (2007), although the sim-
ulation is shorter term than the MMHI hiatus, but additional

paleoclimate records are needed to improve its spatial and
temporal resolution. A northward shift in the mean position
of the ITCZ is consistent with drier conditions in the south-
ern tropics, e.g., a weaker South American summer monsoon
(Cruz et al., 2005; Seltzer et al., 2000; Wang et al., 2007; but
see also Fig. 9 of Zhang et al., 2013), and with wetter condi-
tions in the northern tropics (e.g., Dykoski et al., 2005; Fleit-
mann et al., 2007; Gasse, 2000; Haug et al., 2001; Weldeab
et al., 2007; Zhang et al., 2013).

5.4 Regional comparisons

Records from neighboring locations (Figs. 8–9; Table S3)
show that the Holocene wet–dry–wet succession reported
here for NW Madagascar also affected other locations.
For example, hydrogen isotope compositions of the n-C31
alkane in GeoB9307-3 from a 6.51 m long marine sedi-
ment core retrieved about 100 km off the Zambezi delta
show a similar wet–dry–wet climate during early, middle,
and late Holocene, respectively (Schefuß et al., 2011). These
changes correspond to changes in temperature from ∼ 26.5
to 27.25 to 27 ◦C, respectively, in the Mozambique Chan-
nel, as suggested by alkenone SST records from sediment
cores MD79257 (Bard et al., 1997; Sonzogni et al., 1998).
The Zambezi catchment is specifically relevant here because
it is located at the southern boundary of the modern ITCZ,
and so has a similar climatic setting as NW Madagascar,
and its sensitivity to the latitudinal migration of the ITCZ
could parallel that of Madagascar. Likewise, temperature re-
construction from the Mozambique Channel could be used to
link regional changes in paleorainfall with regional changes
in temperature. A general overview of the Holocene climate
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Figure 9. Regional comparison. (a) Lake Challa BIT index (Verschuren et al., 2009). (b) Lake Tanganyika C28δD (Tierney et al., 2008, 2010).
(c) Lake Masoko low field magnetic susceptibility (10−6 m3 kg−1) (Garcin et al., 2006). (d) Lake Malawi C28 δD (Konecky et al., 2011).
(e) Lake Chilwa OSL dates of shoreline (Thomas et al., 2009). (f) Wonderkrater reconstructed paleoprecipitation, PWetQ (precipitation of the
wettest quarter; Truc et al., 2013). (g) Cold Air Cave corrected (corr.) and uncorrected (uncorr.) δ18O profiles from Stalagmite T8 (Holmgren
et al., 2003). (h) Tswaing Crater paleorainfall derived from sediment composition (Partridge et al., 1997). (i) Indian Ocean SST records from
alkenone (Bard et al., 1997; Sonzogni et al., 1998). (j–k) Zambezi δD n-C31 alkane and δ13C n-C31 alkane (Schefuß et al., 2011). (l) Lake
Tritrivakely stacked magnetic susceptibility (Williamson et al., 1998). (m) NW Madagascar (Anjohibe and Anjokipoty) interval of deposition
of Stalagmite ANJB-2 and Stalagmite MAJ-5 (this study). The two vertical dashed lines indicate the boundary of the early, middle, and late
Holocene by Walker et al. (2012) and Head and Gibbard (2015).
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Figure 10. The 8.2 ka BP event in Madagascar. Oxygen isotope
record from Greenland (GRIP and NGRIP) ice cores (Vinther et
al., 2009) compared with Stalagmite ANJB-2 δ18O and δ13C.

in the African locations neighboring Madagascar suggests a
roughly consistent wetter and drier climate during the early
and middle Holocene, respectively (Fig. 9, Table S3, also see
Gasse, 2000; Singarayer and Burrough, 2015). However, late
Holocene paleoclimate reconstructions vary. A simple expla-
nation to this late Holocene variability is unlikely, but several
interacting factors, including the latitudinal migration of the
ITCZ, changes in ocean oscillations and sea surface temper-
atures, volcanic aerosols, and anthropogenic influences may
have played a role (e.g., Nicholson, 1996; Gasse, 2000; Tier-
ney et al., 2008; Truc et al., 2013). Assessing these factors is
beyond the scope of this study.

5.5 The 8.2 ka BP event in Madagascar: linkage to ITCZ
and AMOC

The 8.2 ka BP event, a widespread cold event in the NH
(e.g., Alley et al., 1997), is apparent in the stalagmite records
(Figs. 5, 10). Stalagmite ANJB-2 δ18O and δ13C ratios reach
their lowest values of −6.8 and −10.9 ‰, respectively, dur-
ing that interval, and mineralogy is primary calcite. These
proxies suggest a wet interval in NW Madagascar.

The 8.2 ka event was triggered by an abrupt freshwater in-
flux from the melting Laurentide Ice Sheet into the North
Atlantic (Alley et al., 1997; Barber et al., 1999; Kleiven et
al., 2008; Carlson et al., 2008; Renssen et al., 2010; Wiersma
et al., 2011; Wanner et al., 2015). This influx of meltwater
altered the density and salinity of the North Atlantic Deep
Water (e.g., Thornalley et al., 2009), weakening the Atlantic
Meridional overturning circulation (AMOC, e.g., Barber et
al., 1999; Clark et al., 2001; Daley et al., 2011; Vellinga and

Wood, 2002; Dong and Sutton, 2002, 2007; Dahl et al., 2005;
Zhang and Delworth, 2005; Daley et al., 2011; Renssen et al.,
2001). Weakening of the AMOC would cause a widespread
cooling in the NH regions (e.g., Clark et al., 2001; Thomas
et al., 2007) but warming in the SH regions (Wiersma et al.,
2011; Wiersma and Renssen, 2006), creating a “bipolar see-
saw” effect (e.g., Crowley, 1992; Broecker, 1998). The inter-
hemispheric temperature difference between the NH and SH
from this effect may be the driver of the southward displace-
ment of the mean position of the ITCZ during the 8.2 kyr
abrupt cooling event. This may have intensified the Malagasy
monsoon in NW Madagascar during austral summers, simi-
lar to what happened to the South American summer mon-
soon in Brazil (e.g., Cheng et al., 2009). In contrast, regions
in the NH monsoon regions became drier at 8.2 ka BP as the
Asian monsoon and the East Asian monsoon weakened (e.g.,
Wang et al., 2005; Dykoski et al., 2005; Cheng et al., 2009;
Liu et al., 2013). The cold NH climate conditions and the wet
climate conditions in NW Madagascar at 8.2 ka BP (Fig. 10)
could suggest causal relationships. However, further research
and data will be needed to confirm this possibility.

6 Conclusions

Petrography, mineralogy, and stable isotope records from
Stalagmite ANJB-2, from Anjohibe Cave, and Stalagmite
MAJ-5, from Anjokipoty Cave, combine to suggest three dis-
tinct intervals of changing climate in Madagascar during the
Holocene: relatively wet conditions during the MEHI, rel-
atively drier conditions, possibly due to episodic dry inter-
vals, during the MMHI, and relatively wet conditions dur-
ing the MLHI. The timing of stalagmite deposition during
the MEHI and the MLHI in NW Madagascar could be at-
tributed to a more southward migration and/or an expanded
ITCZ, increasing the duration of the summer rainy seasons,
perhaps linked to a stronger Malagasy monsoon. This could
have been tied to the temperature gradient between the two
hemispheres and weakening of the AMOC. In contrast, the
ca. 6500-year depositional hiatus during the MMHI could
indicate a northward migration of the ITCZ, leading to rel-
atively drier conditions in NW Madagascar. The evidence of
the 8.2 ka event in the Malagasy records may further suggest
a close link between paleoenvironmental changes in Mada-
gascar and abrupt climatic events in the NH, suggesting that
during the MEHI Madagascar’s climate was very sensitive to
abrupt ocean–atmosphere events in the NH.

Although the ITCZ is unquestionably one of the climatic
drivers influencing climate in Madagascar and the surround-
ing locations, several climatic factors need to be investigated
in more detail. For example, we do not fully understand if
the latitudinal migration is paired with the expansion and/or
contraction of the ITCZ, which would affect the strengths of
the associated monsoon systems. In addition, the interplay
between the ITCZ and other factors involving changes in sea
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surface temperatures, particularly IOD–ENSO, needs to be
investigated in detail. Data–model comparison (for example
at the 8.2 ka event) and improved spatial and temporal resolu-
tion of paleoclimate datasets could be an approach to address
this challenge.
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